Vector Fields Tangent to Foliations
نویسندگان
چکیده
We investigate in this paper the topological stability of pairs (ω,X), where ω is a germ of an integrable 1-form and X is a germ of a vector field tangent to the foliation determined by ω.
منابع مشابه
Identification of Riemannian foliations on the tangent bundle via SODE structure
The geometry of a system of second order differential equations is the geometry of a semispray, which is a globally defined vector field on TM. The metrizability of a given semispray is of special importance. In this paper, the metric associated with the semispray S is applied in order to study some types of foliations on the tangent bundle which are compatible with SODE structure. Indeed, suff...
متن کاملA Hölder continuous vector field tangent to many foliations
We construct an example of a Hölder continuous vector field on the plane which is tangent to all foliations in a continuous family of pairwise distinct C foliations. Given any 1 ≤ r < ∞, the construction can be done in such a way that each leaf of each foliation is the graph of a Cr function from R to R. We also show the existence of a continuous vector field X on R and two foliations F and G o...
متن کاملOn the k-nullity foliations in Finsler geometry
Here, a Finsler manifold $(M,F)$ is considered with corresponding curvature tensor, regarded as $2$-forms on the bundle of non-zero tangent vectors. Certain subspaces of the tangent spaces of $M$ determined by the curvature are introduced and called $k$-nullity foliations of the curvature operator. It is shown that if the dimension of foliation is constant, then the distribution is involutive...
متن کاملM ar 2 00 5 On the intrinsic geometry of a unit vector field ∗
We study the geometrical properties of a unit vector field on a Riemann-ian 2-manifold, considering the field as a local imbedding of the manifold into its tangent sphere bundle with the Sasaki metric. For the case of constant curvature K, we give a description of the totally geodesic unit vector fields for K = 0 and K = 1 and prove a non-existence result for K = 0, 1. We also found a family ξω...
متن کامل4 M ar 2 00 5 On the intrinsic geometry of a unit vector field ∗
We study the geometrical properties of a unit vector field on a Riemann-ian 2-manifold, considering the field as a local imbedding of the manifold into its tangent sphere bundle with the Sasaki metric. For the case of constant curvature K, we give a description of the totally geodesic unit vector fields for K = 0 and K = 1 and prove a non-existence result for K = 0, 1. We also found a family ξω...
متن کامل